
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 3, September 2006

Aerospace Vehicle Trajectory Design and Optimization
Within a Multi-Disciplinary Environment

Robert Windhorst∗
NASA Ames Research Center, Moffett Field, CA 94035

and
Eric Galloway, Eric Lau,† David Saunders,‡ and Peter Gage§

ELORET, Moffett Field, CA 94035

A trajectory design and optimization tool named Mission is developed to operate within
a multi-disciplinary analysis tool environment for conceptual design of aerospace vehicles.
Mission possesses several features designed to facilitate its set-up and operation within the
environment. It receives input via an Extensible Markup Language tagged data file. The
tree structure of the tags reflects that of a branched and multi-segmented trajectory, aiding
parsing and editing for set-up of data exchange within the environment. Mission uses Xerces,
a public domain library, for parsing data files. In addition, it is linked to both gradient-based
and genetic algorithm-based optimizers, allowing a choice depending on the amount of a priori
information available.When little is known about the control variables, an initial guess of their
histories may be forgone by initializing the optimization process with the genetic algorithm.
Once a solution is approached, the gradient-based method is used. This strategy increases
the robustness and autonomy of the trajectory tool operation within the multi-disciplinary
environment. Finally, Mission’s trajectory integration process is coded for parallel execution
via the Message Passing Interface standard. The resultant execution speed increase reduces
the relative expense of operating Mission within the multi-disciplinary environment. The
results of a Crew Transfer Vehicle “abort from ascent” problem are presented to demonstrate
and quantify Mission’s features.

Nomenclature
a base area of nozzle
c fuel mass flow rate
CD drag coefficient
CL lift coefficient
D drag
g local gravitational acceleration
go sea level gravitational acceleration
h altitude
Isp specific impulse
L lift
m mass

Received 27 January 2005; accepted for publication 5 October 2005. This material is declared a work of the U.S. Government
and is not subject to copyright protection in the United States. Copies of this paper may be made for personal or internal use, on
condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923; include the code 1542-9423/04 $10.00 in correspondence with the CCC. This material is a work of the U.S. Government
and is not subject to copyright protection in the United States.∗ Aerospace Engineer, Senior Member AIAA.
† Research Scientist.
‡ Senior Research Scientist, Member AIAA.
§ Technical Director, Associate Fellow AIAA.

471

WINDHORST ET AL.

ndv number of design variables
ng number of trajectory integrations needed to calculate a gradient
ngen number of generations per execution
nl number of trajectory integrations needed to perform a line search
ni number of major iterations per execution
np number of processors
npop number of genetic strings in a population
M Mach number
p local atmospheric pressure
pc probability of a gene being crossed over
pm probability of a gene being mutated
psl sea level atmospheric pressure
q dynamic pressure
r radial coordinate
re radius of earth
rs execution speed ratio of two parallel runs
S side force
Sref vehicle reference area
t time
ti time required to perform a gradient-based optimization iteration
tg time required to evaluate fitness function values for all genetic strings in population
ts average time required to integrate a single trajectory
T thrust
v relative speed of vehicle
α angle of attack
β side slip angle
χ heading angle
δ nozzle pitch angle
φ longitude
γ flight path angle
ηf eas SNOPT feasibility criterion
ηopt SNOPT optimality criterion
λ latitude
µ throttle setting
ρ local atmospheric density
σ bank angle
ω angular speed of earth
A a matrix
l vector of lower bounds on x
u vector of upper bounds on x
x vector of design variables
f(x) objective function
c(x) vector of nonlinear constraint functions

I. Introduction

ANEW trajectory design and optimization tool called Mission is being developed at NASAAmes Research Center.
It is intended to work within the Advanced Engineering Environment (AEE), a multi-disciplinary analysis tool

environment for conceptual design of future launch vehicles linked via a Product Data Management (PDM) system
to a relational database.1

472

WINDHORST ET AL.

As an integral part of the vehicle conceptual design process, the trajectory code calculates the fuel burned during
ascent for vehicle sizing and the heat load encountered during re-entry for Thermal Protection System (TPS) material
choice and thickness sizing.1,2 Fuel burned or heat load is desired not for just any feasible ascent or re-entry trajectory,
but rather for an optimal trajectory–that is, a trajectory that minimizes fuel consumed, heat load, or any other parameter
of interest. The trajectory code must therefore have the ability to integrate many trajectories and identify optimal
control histories. In the case of an abort, the trajectory code serves to identify viable trajectories given the current
state of the vehicle as needed for safety probability determination.1,3 Furthermore, the trajectory code must perform
these analyses for many different vehicle concepts and for trajectories defined by different origins, destinations, and
events.

The POST4 and OTIS5 trajectory tools, currently available within AEE, are the products of many years of devel-
opment. Both have the capability of modeling most vehicles and trajectories and are based on tested and sound
algorithms. Unfortunately, their heritage code structure makes them unwieldy to set up within AEE. For example,
they use long detailed FORTRAN namelists for data input. Namelists exhibit minimal data structure and do not
support the inclusion of data attributes, making them difficult to parse for information. Moreover, POST and OTIS
are linked to gradient-based optimizers that generally require good initial guesses of the design variables to produce
sensible answers. This burdens the user and hinders autonomous execution when linked with other tools.1 Depending
on the initial starting point, POST and OTIS optimized solutions can easily require hours of execution time.1

A newer trajectory tool, Traj_Opt,3 has also been integrated into the AEE environment. Traj_Opt employs a
gradient-based optimizer and, while effective and efficient on a single processor, shares lack of autonomy with POST
and OTIS. In addition, Traj_Opt treats single segment trajectories only and has no propulsion capabilities.

Experience with the several existing trajectory tools available in AEE prompted Monell et al., in Ref. 1 to note
that “trajectory calculations consume a significant portion of the total analysis cycle for two reasons: optimization
is inherently computationally expensive . . ., and many optimizations fail, requiring user intervention.” Mission
offers two main features designed to reduce the relative expense of trajectory calculations within AEE: optimizer
interchangeability and parallelization.

In addition to the features listed above, Mission’s input file contains data marked up with Extensible Markup
Language (XML). The tree structure of the XML tags reflects that of branched and multi-segmented trajectories,
thereby facilitating data parsing. The relative ease of data parsing reduces the complexity of setting up data exchange
between Mission and other tools in the environment.

Mission’s code is object-oriented and written in C++. This makes its various algorithms and functions independent
of each other.6 Hence, if revisions or extensions are desired, the changes to the code are localized. Moreover, unit
testing the algorithms and functions is facilitated.

This paper presents the trajectory integration and optimization algorithms within Mission. It shows how the tree
structure of the XML tags reflects that of a branched and multi-segmented trajectory, and it describes the strategy
used to parallelize the trajectory integration portion of the optimization process. Finally, the results of an abort from
ascent optimization problem are presented to demonstrate and quantify Mission’s features.

II. Trajectory Integration
Mission generates trajectories by integrating the three-degrees-of-freedom equations of motion for a point mass

vehicle traveling in the vicinity of a spherical earth with no winds.7 Six flight path coordinates are used as state
variables. There are seven equations, one for each state variable:

φ̇ = v

r cos λ
cos γ cos χ (1)

λ̇ = v

r
cos γ sin χ (2)

ṙ = v sin γ (3)

v̇ = 1

m
(T cos β cos(α + δ) − D) − g sin γ

+ rω2 cos λ(sin γ cos λ − sin λ sin χ cos γ) (4)

473

WINDHORST ET AL.

χ̇ = 1

mv cos γ
[cos σ(S + T sin β cos(α + δ))

− sin σ(L + T sin(α + δ))] − v

r
cos χ cos γ tan λ

+ 2ω(sin χ cos λ tan γ − sin λ) − rω2

v cos γ
sin λ cos λ cos χ (5)

γ̇ = 1

mv
[cos σ(L + T sin(α + δ))

+ sin σ(S + T sin β cos(α + δ))] + cos γ
(v

r
− g

v

)

+ 2ω cos λ cos χ

+ rω2

v
(cos γ cos2 λ + sin λ sin χ sin γ cos λ) (6)

and

ṁ = c. (7)

Mission uses several mathematical models for calculating forces acting on the vehicle. The 1976 Atmosphere
Model8 supplies local atmospheric properties about the vehicle as a function of altitude. Vehicle aerodynamic coe-
ficients, CL and CD , are calculated via tri-linear interpolation of pre-computed three dimensional tables. The table
independent variables are M , q, and α. L and D are then calculated via

L = 1

2
ρv2Sref CL and D = 1

2
ρv2Sref CD. (8)

The local acceleration of gravity is modeled by a simple inverse square law,

g = go

(
re

h + re

)2

(9)

Thrust is modeled by the relationship

T = µcgoIsp − a(psl − p) (10)

The object-oriented C++ code structure of Mission allows convenient incorporation of new math models to
extend or replace those described above.

Figure 1 shows a block diagram of the Mission code. There are two types of inputs to the trajectory integration
algorithm: boundary conditions and controls.

Boundary conditions are also of two types: initial and final. Initial conditions denote the starting point of the
trajectory. Fully specified initial conditions consist of values for each of the seven state variables and a beginning
time. A final condition denotes an event occurring in the middle of, or at the end of a trajectory. For example, a first
stage separation is an event that could occur in the middle of a trajectory. A fully specified final condition consists of a
single value of one of the seven states, time, or a function of these. Currently, Mission possesses a library of functions
that may be used as boundary conditions. Mission’s object-oriented code structure allows convenient extension of
this library.

Four controls are available to the user: α, σ, µ, and δ. Each control must be specified as a function of time. Within
Mission, functions of time are modeled using spline interpolations on a user-supplied one-dimensional table with t as
the independent variable. Mission’s object-oriented code structure allows convenient extension of the set of control
variables and swapping of t with a state variable.

The outputs of the trajectory integration algorithm are the time histories of the states, state rates, controls, and
functions of the states. Generally, functions of the states include local atmospheric parameters, heating parameters

474

WINDHORST ET AL.

Fig. 1 Mission block diagram.

for specified locations on the vehicle body, and forces acting on the body. Mission possesses a library of functions that
can be used for output. As with the boundary conditions, Mission’s object-oriented code structure allows convenient
extension of this library.

In addition to its 4th/5th order Runge-Kutta integration algorithm, Mission also contains a state jump algorithm
for modeling trajectory segments such as rocket staging. As with the math models, incorporation of other trajectory
integration algorithms is facilitated by Mission’s object-oriented code structure.

III. Trajectory Optimization Method
Mission identifies optimal trajectories via the Direct Shooting9 method. The general nonlinear constrained

optimization problem may be stated mathematically as10

min
x∈�n

f (x)

subject to l ≤

 x

c(x)

Ax


 ≤ u. (11)

Trajectory optimization by Direct Shooting is achieved by choosing a subset of the inputs to the trajectory integration
algorithm as design variables, see Fig. 1. Thus, design variables may be values of boundary conditions and/or
controls. When a control is chosen as part of the set of design variables, the values of the dependent variables in the
table that model the control are added to the design variable set.

As illustrated in Fig. 1, a subset of the outputs of the trajectory integration algorithm is specified as objective and
constraint function values. Therefore, state, state rate, control, and/or functions of state values at any event time or
all times during a trajectory segment may be used as an objective or constraint function.

The user initializes the entire process by supplying values for all of the inputs. Since the design variables are part
of the inputs, the user normally supplies an initial guess of their optimal values.

Mission provides the user with two optimization methods, a gradient-based method and a genetic algorithm(GA)-
based method. The gradient-based method is SNOPT, a sequential quadratic programming method fully described in
Ref. 10. The GA-based optimizer was written at Ames Research Center and is further described below. As with the
trajectory integration algorithms, incorporation of other optimization algorithms is facilitated by the object-oriented
code structure.

475

WINDHORST ET AL.

IV. Genetic Algorithm
Gradient-based optimizers applied to trajectory optimization are very efficient given a good guess of the design

variables and accurate derivatives of the objective and constraint functions. They do not, however, guarantee con-
vergence on a global optimum from any given specific guess. Further problems can occur when a good guess is
not known. From a poor guess, a locally optimum solution is frequently unacceptable to the user. More commonly
unconverged results may be produced with some constraints apparently infeasible. For many problems, the user may
have to iterate by supplying the optimizer with multiple guesses until the optimizer returns an acceptable solution.
This process requires considerable user intervention and experience.1

In contrast to gradient-based approaches, GA-based optimizers generate their own guess and are robust in the
face of discontinuous or nonlinear functions. Their disadvantage is that in practice they are costly in the sense that
they require large numbers of calls to the objective function for relatively small decreases in the cost function.11

Treatment of constraints is also limited.
The GA linked to Mission is a simple one. It was created to explore the possibility of using a GA to autonomously

generate a guess of the design variable values that could be used to initialize a gradient-based optimization algorithm.
A selection strategy (described below) possessing weak pressure was used to avoid quick convergence to a local
optimum. More sophisticated selection strategies with stronger pressure appear in the literature.12

Mission’s GA uses several steps. First, a population of genetic strings, each containing a full set of design variable
values, is generated randomly. The design variable values in the genetic string must be between their upper and
lower limits. This population is the zeroth generation which is subsequently morphed so that each member of its
successive generations improves the value of a fitness function. The fitness function here is the objective function of
the optimization problem. If the optimization problem is constrained, a weighted sum of the squares of the constraint
violations is added to the fitness function. The fitness function value of each genetic string in the population is
evaluated by using the design variable values stored in the genetic string to integrate a new trajectory and compute
objective and constraint values. Fitness function values are stored with their corresponding genetic strings.

New generations are formed by the following selection process. The population is randomly grouped in pairs
of genetic strings. Each pair is taken from the population as parents and used to spawn two children through a
combination of mutation and cross-over processes. Fitness function values are evaluated for each child. Of the two
parents and two children, the two genetic strings with the best fitness are placed back into the population, while the
others are discarded.

While the robustness of the GA-based optimizer is desired in regions far away from an acceptable solution, the
convergence property of the gradient-based optimizer is desired when near an acceptable solution. Mission easily
interfaces with either type of optimizer. Hence when confronted with a problem without a good starting point, it
can use the GA-based optimizer until a suitable guess is determined and then switch to a gradient-based algorithm
to refine the solution. In practice, the switch is made when the GA-based optimizer is no longer making acceptable
progress. Also, in the example problem that we solved we increased the size and density of the set of control variables
when making the switch. Within AEE this process could be automated such that no user intervention was required.

V. Input File Data “Marked Up” with XML
Mission’s input file data is “marked up” using XML, the W3C-endorsed standard for document mark up.13 Within

XML a unit of data and its associated mark up tags are called an element (see Fig. 2). Mark up tags delimit the element
and contain the element name and attributes. Both beginning and ending tags are surrounded by angle brackets, with
the ending tag containing a slash after the first bracket. Elements contain data, in the form of text strings and/or other
elements. An XML schema defines the structure of the elements, i.e., names, contents, and attributes. Schemas can
be developed for any set of data a developer wishes to structure and store in a computer.

XML is fast becoming an industry standard for marking up data passed between servers and web browsers.13 In
fact there already exists a large amount of support in the form of free tools for defining, parsing, and editing XML.
In addition, many database servers provide tools designed to support XML. Routine operations, such as parsing files

Fig. 2 Structure of an XML element.

476

WINDHORST ET AL.

Fig. 3 Generic RLV mission.

and passing data to other processes such as the PDM, are naturally supported by the environment instead of the
programmer.

Mission is linked with the Apache implementation of the Document Object Model (DOM) named Xerces14 for
internal reading and parsing of the input file data. Mission’s data elements and element contents are defined by an
XML schema. When Mission is executed, Xerces automatically validates the input file with the schema to find syntax
and context errors. When Xerces encounters an error, it provides a clear message that assists the user with quickly
identifying the error in the input file and correcting it.

A data model named the Launch Vehicle Language (LVL) was developed using XML to ensure consistent data
passage between tools within AEE.15,16 Because both Mission input data and the LVL are implemented in XML,
Mission input data essentially becomes an extension of the LVL. The weights and sizing tool, XWAT, also has adopted
XML for the same reason.17

The XML schema defines element tags and content such that they model the tree structure of the mission being
analyzed. Figure 3 and Table 1 illustrate the structure of a generic reusable launch vehicle (RLV) mission with
the on-orbit section removed. Notice that it consists of components made up of other components forming a tree.
For example, a mission component is on the first level and consists of a group of trajectory components each
bounded by event components. Similarly, on the second level, trajectory components consist of a group of segment
components each bounded by event components. Mission, trajectory, event, and segment XML elements may be
defined accordingly.

Figure 4 shows one method of marking up with XML the data that describe the generic RLV mission presented in
Fig. 3 and Table 1. The elements are missions, trajectories, segments, and events. Each element has a name attribute

Table 1 Generic RLV mission trajectories, segments, and
events.

Trajectory Segment Event

1. Ascent 1.1 Clear tower 1.1 Ignition
1.2 1st Stage 1.2 Tower clearance
1.3 2nd Stage 1.3 Stage separation

1.4 Orbit insertion
2. Re-entry 2.1 Re-entry 2.1 De-orbit

2.2 Max L/D glide 2.2 Max heating
2.3 Landing

3. Tank return 3.1 Tank return 3.1 Stage separation
3.2 Splash down

477

WINDHORST ET AL.

Fig. 4 XML Mark up of data describing an RLV generic mission.

corresponding to its name in Table 1 and data corresponding to its number in Table 1. Mission’s XML mark up
structure is similar to that shown in Fig. 4. It also contains the same mission, trajectory, segment, and event elements.
However, their data and attributes are different and more extensive, designed to contain all the information necessary
to set up the program. In addition, it possesses many more types of elements. A wide range of missions can be created
by arrangement of the elements. Once missions are created, the readable format of the data facilitates modification.
If something more sophisticated than a text editor is desired to do the modification, free or commercial XML editing
tools are available.16

Not only is the tree structure of the mission reflected by the XML, but it is also reflected by the class structure of
the object-oriented code. For example, the trajectory class definition contains pointers to lists of segment and event
objects. Reuse of the mission tree structure at multiple development stages of the code (mission design, input file
data mark up, and object-oriented design) minimizes the need to restate, reformat, or translate data, when using,
modifying, or testing the code.

VI. Parallelization
The trajectory integration portion of the optimization process is parallelized for increased execution speed. The

Message Passing Interface18 (MPI) standard is employed for portability. The parallelization scheme is slightly
different depending on the optimization algorithm being used. Relations for estimating the speed ratio of two runs
utilizing different numbers of processors for each optimization algorithm are derived and discussed below.

The process of evaluating fitness functions in the GA is conveniently parallel because the fitness function value
for each genetic string can be evaluated independently. Each fitness function evaluation consists of a trajectory
integration and an evaluation of the output functions. Hence, the time required to calculate all the fitness function
values of a population of genetic strings is estimated as

tg ≈ npopts . (12)

Here, ts denotes the average value of the time required to integrate a single trajectory. In practice this time varies
significantly depending on trajectory length and time step. The npop fitness function evaluations can be distributed
across np processors. Now,

tg ≈ rup

[
npop

np

]
ts . (13)

478

WINDHORST ET AL.

where rup denotes a round up function. A round up function rounds up all numbers having a decimal portion, no
matter how small. Finally the execution speed ratio of two runs possessing the same number of generations is

rs ≈ rup

[
npop1/np1

]
rup

[
npop2/np2

] (14)

where the subscript denotes run 1 or run 2.
Gradient-based optimization algorithms compute optimal design variable values by successively improving on

an initial guess. A single iteration consists of two parts, 1) finding a search direction and 2) performing a line search
along the direction found in 1). The line search identifies new values of the design variables that produce more
optimal values of the objective and constraint functions. Our parallelization effort focuses on the former part.

An integral part of finding a search direction is calculating the gradients of the objective and constraint functions.
In our case, gradients are generated by finite differencing each design variable and integrating a new trajectory to
obtain the differences in objective and constraint function values. This process is simple to parallelize because, like
the process for evaluating fitness functions of genetic strings, each trajectory can be calculated independently.

The time required to perform a single iteration is estimated as

ti ≈ ts(ng + nl). (15)

ts is essentially constant for the finite difference calculations because the control finite differences are necessarily
tiny. However, ts can vary significantly from one iteration to the next.

Although only one gradient calculation per iteration is assumed here, sometimes SNOPT requests more than one.
Equation (15) assumes that the time required for trajectory integrations is much greater than the time required for
other operations during the iterations. Now, assuming one-sided differences,

ng = ndv + 1, (16)

where the addition of one accounts for the nominal trajectory. For central differences this would become

ng = 2ndv + 1. (17)

As with the distribution of processors for the GA method, the ndv integrations are distributed across np processors.
Note that the nominal trajectory is not included in the distribution. Now,

ti ≈ ts(rup

[
ndv

np

]
+ 1 + nl), (18)

Finally, the speed ratio of two runs having the same number of optimization iterations is

rs ≈ rup[ndv1/np1] + 1 + nl1

rup[ndv2/np2] + 1 + nl2

(19)

Equations 14 and 19 ignore the additional set-up time for multiple processors and the time required for the multiple
processors to communicate with each other. In practice these become significant as ndv approaches np, as will be
shown below.

VII. HL-20 Abort to Gander
Mission was applied to an “abort from ascent” trajectory optimization problem to demonstrate its optimization and

execution speed features. This is the same problem as one of those worked in Ref. 3. In this scenario a Crew Transfer
Vehicle (CTV) conceived of in Ref. 19, the HL-20, is carried atop a Titan III expendable launch vehicle (ELV).
Launch occurs at the Kennedy Space Center in Florida. At some time during the ascent to orbit an abort is initiated
and separation occurs. Of interest is the window of opportunity on the ascent trajectory from which the HL-20 can
glide to Gander, Newfoundland. The edges of the window are identified by setting up a mission and applying two

479

WINDHORST ET AL.

optimizations to it. The mission consists of two trajectories: ascent and glide back. The ascent trajectory is fixed
by the nominal mission. The glide back trajectory emanates from the ascent at separation and is modifiable. The
lower edge of the window is found by minimizing the separation time subject to several constraints on the glide
back trajectory: 1) the HL-20 must be able to glide to Gander, 2) the HL-20 does not exceed its temperature limit
at the nose stagnation point, and 3) the HL-20 does not exceed a 3 g acceleration limit. In this case, the temperature
limit is enforced via an Aero-thermal Performance Constraint (APC) curve.20 This curve is pre-defined by coordinate
pairs of speed and altitude such that, as long as the vehicle’s speed and altitude place it above the APC curve, the
temperature limit is not violated. Mission also supports distributed heating constraints via table look-up, but the APC
alternative for a single surface location is convenient here for illustrative purposes. The upper edge of the window
is found by maximizing the separation time subject to the same constraints. The design variables are the α and σ

control points during the glide back along with the separation time which also serves as the objective.
The following discussion focuses on the results of the latest separation time optimization problem. Optimization

was accomplished by first using the GA-based optimizer to generate an initial guess of the values of a coarse set of
design variables. Once a suitable guess was generated, a denser set of design variables was swapped in, and SNOPT
was used to refine the guess. Table 2 lists parameters of the GA and SNOPT optimization runs. These runs were
made on a single processor 1,700 MHz Pentium 4 PC.

In the following figures, two curves are shown: the GA solution and the SNOPT solution.
Figure 5 illustrates the latitude vs. longitude path of the entire mission. The ascent trajectory of the stack-up is

denoted by the squares, and the glide back trajectories of the HL-20 are denoted by the dotted lines. The separation
point defines where the HL-20 separates from the stack-up, the glide back trajectory begins, and the top edge of the
abort window. The GA and SNOPT solutions have slightly different separation times. The SNOPT separation time
is later, thus more optimal, than the GA solution. The location of Gander is marked with a dot. Although the GA
solution does not reach Gander exactly, it comes close enough that it provides an adequate initial guess for SNOPT.

Figure 6 shows the altitude vs. speed path of the glide back trajectory and the APC curve. Clearly, both glide back
solutions remain above the APC curve, satisfying the temperature constraint.

Figure 7 shows the HL-20 angle of attack and bank angle time histories for the glide back trajectories. The SNOPT
solution control angles are more refined, partly through use of more control points and partly through precise meeting
of the necessary conditions for optimality. Note that employing comparable numbers of control variables for the GA
tends not to refine the starting guess for SNOPT, apart from being too costly.

Figure 8 shows the HL-20 acceleration time histories for the glide back trajectories. Clearly, the 3 g acceleration
limit is not violated by the SNOPT solution, but it is somewhat violated by the GA solution. The violation of the GA
solution does not destabilize the SNOPT convergence.

As shown by the figures, the GA solution does not meet all the constraints and does not reach as optimal a solution
as the SNOPT solution. By changing a constraint’s weight in the fitness function, more or less emphasis can be
placed on satisfying that constraint. GAs do not have defined ending criteria. Generations are spawned until no
further improvement in the fitness function is observed. In our case we did not produce an exhaustive number of

Table 2 Parameters of genetic algorithm and
SNOPT optimization runs

Genetic algorithm SNOPT

ndv 17 ndv 81
αs 8 # αs 40
σ s 8 # σ s 40
wall t 3,080 sec. wall t 956 sec.
separation t 424 sec. separation t 430 sec.
ngen 50 ni 104
npop 50 nl 7.6
pc 0.8
pm 0.1

480

WINDHORST ET AL.

Fig. 5 Latitude vs. Longitude path for the entire mission.

Fig. 6 HL-20 Altitude vs. speed path for the glide back trajectory.

481

WINDHORST ET AL.

Fig. 7 HL-20 control angles for the glide back trajectory.

Fig. 8 HL-20 Aerodynamic acceleration for the glide back trajectory.

482

WINDHORST ET AL.

Table 3 NAS Machine specifications.

Name Make CPU # CPUs Clock

Lomax SGI O3K R12000 512 450 MHz

generations. We only produced enough to give us an adequate initial guess. Further generations may have produced
solutions having a more optimal separation time and satisfying all of the constraints.

To illustrate the execution speed increase due to parallelization, multiple runs were made using different numbers
of processors. For these runs, only the gradient-based optimizer was used. Similar execution speed increases are
implied for runs made with the parallelized GA optimizer. All runs started from the same initial guess previously
generated. The solutions were checked to assure that each case converged to the same SNOPT optimality and
feasibility criteria in the same number of iterations, ni . All runs generated the same optimal separation time of 430.03
seconds. Furthermore, ndv and nl were constant. Comparisons were made on one machine, Lomax, which is part
of the NASA Advanced Supercomputing (NAS)21 facility located at NASA Ames Research Center. Table 3 shows
some specifications for Lomax.

Figure 9 illustrates rs vs. np for the series of parallel runs. Table 4 shows the parameters of the run that served as
a baseline from which the rs were computed. Figure 9 contains four curves. The curve labeled Equation 19 shows
values of Eq. (19) for the baseline parameters and discrete np. Because nl is slightly different in 0.5 and 0.25 time
step cases, the two values were averaged. The baseline run was used as run 1 in the equation. There are two actual
curves that were created using integration time steps of 0.5 and 0.25 seconds. They show the actual measured rs

relative to the baseline. The linear curve is the one that would result if the process was perfectly parallel. For example,
a doubling of np would double rs .

Figure 9 shows that increases of rs decrease as np increases. After a certain np is reached, no significant increase
in rs is observed. Inspection of Eq. (19) reveals that the curves should be flat for all np greater than ndv + 1, implying
that greater speed increases can be achieved by increasing ndv . The actual curves flatten out sooner than the Eq. (19)

Fig. 9 Execution speed ratio vs. number of processors.

Table 4 Parameters of baseline run.

Time Step (sec) np ndv nl ni ηopt e-3 ηf eas e-10 wall t (sec)

0.5 1 83 6.2 138 9.0 3.3 2580
0.25 1 83 5.7 100 4.5 720 3624

483

WINDHORST ET AL.

curve. This is because as np increases the program must spend more time setting up processors and exchanging data
among processors. The relative time expense of these can be reduced by halving the integration time step. See that
the 0.5 actual curve flattens out sooner than the 0.25 actual curve. However, the 0.25 case requires more execution
time. Hence, increases in computational efficiency (i.e. effective use of all processors) are achieved at the expense
of longer execution times. Similar effects would be observed if the time step was held constant and the trajectory
duration increased.

VIII. Conclusion
Mission is designed to address the set-up and operating issues of RLV trajectory design and optimization within

AEE. Specifically, Mission simplifies set-up of data exchange between tools by using XML “marked up” input data.
Its object-oriented C++ code design allows for convenient extension of mathematical models and functions. Mission
realizes autonomous operation through the use of a GA-based optimizer, and it achieves reduced execution times
through parallelization. An approximate factor of 7 speed increase was observed for 32 processors and a time step
of 0.25 seconds for the example case solved here. Greater speed increases and increases in computational efficiency
can be achieved by making the problem larger (i.e. increasing ndv , decreasing the integration time step, or increasing
the duration of the trajectory).

Future research and development of selection strategies could improve performance of the GA-based optimizer. In
addition, more effort could be spent on optimizing the sequencing of message passing between processors. Progress
here would result in actual execution time ratios moving closer to those predicted by Eq. (19).

Acknowledgments
The authors acknowledge Dr. John Melton, NASA Aerospace Engineer, for writing the GA optimizer used in this

study and Ivan Peragine, NASA student intern, for executing the many computer runs necessary for compiling data
and generating the parallel processing figures shown in this paper.

References
1Monell, D., Mathias, D., Reuther, J., and Garn, J., “Multi-Disciplinary Analysis for Future Launch Systems Using NASA’s

Advanced Engineering Environment,” AIAA 2003-3428, June 2003.
2Windhorst, R., Ardema, M., and Bowles, J., “Minimum Heating Entry Trajectories for Re-usable Launch Vehicles,” Journal

of Spacecraft and Rockets, Vol. 35, No. 5, 1998, pp. 672–682.
3Saunders, D., Allen, G., Gage, P., and Reuther, J., “Crew Transfer Vehicle Trajectory Optimization,” AIAA 2001-2885, June

2001.
4Brauer, G., Cornick, D. E., and Stevenson, T., “Capabilities and Applications of the Program to Optimize Simulated

Trajectories (POST),” NASA CR-2770, Feb. 1977.
5Hargraves, C. R., and Paris, S. W., “Direct Trajectory Optimization Using Nonlinear Programming and Collocation,” Journal

of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338–342.
6Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented Modeling and Design, Prentice-Hall,

Inc., New Jersey, 1991, pp 9–10.
7Miele, A., Flight Mechanics, Theory of Flight Paths, Addison-Wesley Publishing Company, INC., Palo Alto, 1962,

pp. 58–66.
8U.S. Standard Atmosphere, 1976, NOAA, NASA, and USAF, U.S. Government Printing Office, Washington D.C., 1976.
9Betts, J. T., “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control, and Dynamics,

Vol. 21, No. 2, 1998, pp. 193–207.
10Gill, P. E., Murray, W., and Saunders, M., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM

Journal of Optimization, Vol. 12, No. 4, pp. 979–1006.
11Gage, P., “New Approaches to Optimization in Aerospace Conceptual Design,” NASA Ames Research Center, Contractor

Report 196695, Moffett Field, CA, March 1995.
12Beasley, D., Bull, D., and Martin, R., “An Overview of Genetic Algorithms: Part 1 Fundamentals,” University Computing,

Vol. 15, No. 2, 1993, pp. 58–69.
13Harold, E. R., and Means, W. S., XML in a Nutshell, O’Reilly and Associates, INC., Sebastopol, 2001, pp. 1–8.
14Apache Website, http://xml.apache.org/xerces-c/.
15Vander Kam, J., and Gage, P., “The Launch Vehicle Language (LVL) Data Model for Evaluating Re-usable Launch Vehicle

Concepts,” to be submitted to the AIAA Aerospace Sciences Meeting, Reno, 2004.

484

WINDHORST ET AL.

16Lau, E., Wong, J., Vander Kam, J., Jiang, X., Palmer, G., and Gage, P., “LVL Editor: A Graphical Tool for Visualizing and
Managing Data in an Engineering Component Hierarchy,” AIAA-2004-1173, Jan. 2004.

17Jiang, X., and Gage, P., “Weights Analysis of Space Launch Vehicles in an Advanced Engineering Environment,” to be
submitted to the AIAA Aerospace Sciences Meeting, Reno, 2004.

18Argonne National Laboratory Website, http://www-unix.mcs.anl.gov/mpi/
19Stone, H. W., and Piland, W., “21st Century Space Transportation System Design Approach: HL-20 Personnel Launch

System,” Journal of Spacecraft and Rockets, Vol. 30, No. 5, 1993, pp. 521–528.
20Kontinos, D. A., Gee K., and Prabhu, D., “Temperature Constraints at the Sharp Leading Edge of Crew Transfer Vehicle,”

AIAA Paper 2001–2886.
21NAS Website, http://www.nas.nasa.gov/.

485

